
https://www.ida.liu.se/~TDDI11	 Embedded	Software	 1	

Chapter	2		Bit	Manipulation	and	Data	Representation	

In	many	embedded	systems,	the	usual	variable	and	data	types	may	not	directly	make	sense.	Instead,	one	
must	figure	out	what	each	individual	bit	represents.	The	purpose	of	this	chapter	is	to	get	familiar	with	
such	scenarios	which	often	require	bitwise	operations.	We	will	see	an	example	about	a	room	controller	
on	the	host	platform	(e.g.,	lab’s	Linux	Mint).	

Note	that	a	number	of	functionalities	are	already	implemented	in	the	source	code,	but	a	few	are	left	for	
you	to	fix	and	complete	(marked	with	“// Assignment”	in	the	source	code).	You	can	start	by	reading	
the	following	explanations	quickly	by	skipping	the	details.	Then,	study	the	source	code	together	with	the	
information	given	below	to	understand	how	it	works.	

1.1 Room	Controller	

Let	us	assume	that	there	is	a	room	with	a	lockable	door,	a	red/green	signal	light,	a	fan	for	ventilation,	a	
temperature	sensor,	a	heater,	a	cooler,	a	humidity	sensor,	a	warning	light	for	low	humidity,	and	a	warning	
light	 for	high	humidity.	Assume	that	 there	 is	a	 room	controller	which	reads	status	of	 the	 lock,	 the	 fan	
speed	switch,	the	air	conditioning	(AC)	switch,	the	temperature,	and	the	humidity.	Depending	on	these,	
the	embedded	 system	 that	works	as	 room	controller	 sends	proper	 commands	 to	 the	 signal	 light,	 fan,	
heater,	cooler,	and	humidity	warning	lights.	It	also	logs	the	readout	values	and	the	outputs.	

1.1.1 Data	Acquisition	and	Format	

All	 the	 input	 and	 sensor	 data	 are	 connected	 to	 pins	 (on	 the	 Integrated	 Circuit	 (IC))	 that	 can	 be	 read	
collectively	from	a	single	input	register.	Such	input	registers	are	often	physically	read-only.	It	will	appear	
as	these	data	are	concatenated	in	one	unsigned	integer	variable:	

31	 	 	 	 	 	 	 	 23	 22	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

X 𝑖""	 𝑖"#	 𝑖"$	 𝑖#%	 𝑖#&	 𝑖#'	 𝑖#(𝑖#)	 𝑖#*	 𝑖#+	 𝑖#"	 𝑖##	 𝑖#$	 𝑖%	 𝑖&	 𝑖'	 𝑖(𝑖)	 𝑖*	 𝑖+	 𝑖"	 𝑖#	 𝑖$	
	

Letter	“X”	implies	that	these	other	bits	are	don’t-care	and	𝑖,	represents	𝑛 − 𝑡ℎ	bit	 in	input	register,	𝐼,	
which	is	shown	above.	Although	the	input	data	bits	come	in	a	variable,	their	meaning	and	values	must	be	
interpreted	as	follows:	

Status	of	lock	is	captured	by	bit	𝑖$	as:	 	

𝑖$	 Status	 Table	[1]	
0	 Door	is	unlock	 	
1	 Door	is	locked	 	

	

	 	

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 2	

	

Fan	speed	switch	affects	bits	𝑖+,	𝑖",	𝑖#	and	should	be	interpreted	as:	

𝑖+	𝑖"	𝑖#	 Value	set	by	room	user	 Table	[2]	
1	1	1	 Off	 	
0	1	1	 Low	Speed	 	
1	0	1	 Medium	Speed	 	
0	0	0	 Full	Speed	 	

	

AC	switch	affects	bits	𝑖%,	…,	𝑖*	and	should	be	interpreted	as:	

𝑖*	 AC	on/off	 Table	[3]	
0	 Off	
1	 On	

	

In	 this	 system	we	will	have	a	desired	 temperature	 that	 room	user	decides	and	communicate	 it	 to	 the	
system	through	a	temperature	selector	switch.	Moreover,	the	actual	room	temperature	is	measured	by	a	
temperature	system	and	read	by	the	system.	

This	particular	temperature	selector,	accepts	temperatures	from	15.0	℃	to	25.0	℃	with	a	resolution	of	
0.5	℃.	The	binary	representation	starts	at	“00001”:	

𝑖%	𝑖&	𝑖'	𝑖(𝑖)	 Temperature	set	by	room	user	 Table	[4]	
0	0	0	0	1	 15.0	℃	
0	0	0	1	0	 15.5	℃	
…	 …	
1	0	1	0	1	 25.0	℃	

	

The	above	table	suggests	that	the	desired	temperature	can	be	calculated	based	on	selector	value	as:	

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝐷𝑒𝑠𝑖𝑟𝑒𝑑 = 14.5 + (𝑖%𝑖&𝑖'𝑖(𝑖))×0.5	℃	 	 (1)	

The	room	temperature	measured	by	the	sensor	is	captured	by	𝑖#',	…,	𝑖#$	as	follows:	

𝑖#'	𝑖#(𝑖#)	𝑖#*	𝑖#+	.	𝑖#"	𝑖##	𝑖#$	 Room	temperature		 Table	[5]	
0	0	0	0	0	.	0	0	0	 0.0	℃	
0	0	0	0	0	.	0	0	1	 0.2	℃	
…	 …	
1	0	0	1	1	.	0	1	1	 19.6	℃	
…	 …	
1	1	1	1	0	.	0	0	0	 30.0	℃	
1	1	1	1	1	.	0	0	0	 < 0.0	℃	(for	convenience	show	-1)	
1	1	1	1	1	.	1	1	1	 > 	30.0	℃	(for	convenience	show	31)	

	

This	particular	 temperature	sensor,	 reports	 temperatures	 in	a	 range	between	0.0	℃	 to	30.0	℃	with	a	
resolution	of	0.2	℃.	If	the	temperature	is	lower	than	0.0	℃,	the	sensor	reports	“11111000”	and	if	higher	

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 3	

than	30.0	℃	the	sensor	reports	“11111111”.	The	above	table	suggests	that	the	measured	temperature	
(assuming	in-range	values)	can	be	calculated	as:	

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑖#'𝑖#(𝑖#)𝑖#*𝑖#+ ×1.0	℃ + (𝑖#"𝑖##𝑖#$)×0.2	℃	 	 (2)	

Note	that	if	the	temperature	is	outside	the	valid	range,	the	above	equation	will	not	work	correctly.	

The	room	humidity	percentage	measured	by	the	sensor	is	captured	by	𝑖"+,	…,	𝑖#&	as	follows:	

𝑖""	𝑖"#	𝑖"$	𝑖#%	𝑖#&		 Room	humidity	 	 𝑖""	𝑖"#	𝑖"$	𝑖#%	𝑖#&		 Room	humidity	 Table	[6]	
0	0	0	0	0	 0	%	 	 …	 …	
0	0	0	0	1	 4	%	 	 1	1	0	1	0	 80	%	
0	0	0	1	0	 8	%	 	 1	1	0	1	1	 83	%	
0	0	0	1	1	 11	%	 	 1	1	1	0	0	 87	%	
0	0	1	0	0	 14	%	 	 1	1	1	0	1	 91	%	
0	0	1	0	1	 17	%	 	 1	1	1	1	0	 95	%	
…	 …	 	 1	1	1	1	1	 100	%	
	

This	 particular	 sensor,	 reports	 humidity	 percentage	 in	 a	 range	 between	0	%	 to	100	%	 in	 a	 nonlinear	
manner.	The	resolution	is	3	%	in	the	middle	of	the	range	and	4	%	for	low	and	high	values,	except	that	it	
takes	a	5	%	 step	 from	95	%	 to	100	%.	 The	above	 table	 suggests	 that	 the	measured	humidity	 can	be	
calculated	as:	

ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 =

𝑖""𝑖"#𝑖"$𝑖#%𝑖#& ×4, 𝑖""𝑖"#𝑖"$𝑖#%𝑖#& < 3
8 + 𝑖""𝑖"#𝑖"$𝑖#%𝑖#& − 2 ×3, 3 ≤ 𝑖""𝑖"#𝑖"$𝑖#%𝑖#& ≤ 27

83 + 𝑖""𝑖"#𝑖"$𝑖#%𝑖#& − 27 ×4, 28 ≤ 𝑖""𝑖"#𝑖"$𝑖#%𝑖#& ≤ 30
100, 𝑖""𝑖"#𝑖"$𝑖#%𝑖#& = 31

	 	 (3)	

As	implied	by	letter	“X”,	the	rest	of	the	bits	(𝑖+#	…	𝑖"+)	are	don’t-care.	We	can	ignore	them.	

1.1.2 Command	and	Actuation	

Depending	on	the	acquired	data	and	their	interpretation	and	information	that	they	provide,	a	number	of	
commands	must	 be	 sent	 to	 actuators.	 All	 these	 are	 put	 together	 in	 an	 integer	 variable	which	 is	 then	
enforced	on	an	output	register	which	is	connected	to	the	output	pins	of	the	IC.		
31	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 8	 7	 	 	 	 	 	 	 0	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

Y 𝑜'	 𝑜(𝑜)	 𝑜*	 𝑜+	 𝑜"	 𝑜#	 𝑜$	
	

Letter	“Y”	implies	that	these	other	bits	must	not	be	touched	and	𝑜,	represents	𝑛 − 𝑡ℎ	bit	in	the	output	
register,	𝑂,	which	is	shown	above.	Their	meaning	and	values	are	interpreted	by	the	actuators	as	follows:	

The	signal	lights’	inputs	are	defined	as:	

𝑜#	 Red	light	 	 𝑜$	 Green	light	 Table	[7]	
0	 Off	 	 0	 Off	
1	 On	 	 1	 On	

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 4	

	

The	fan	inputs	are	defined	as:	

𝑜+	𝑜"	 Fan	speed	 Table	[8]	
0	0	 Off	
0	1	 Low	Speed	
1	0	 Medium	Speed	
1	1	 Full	Speed	

	

The	cooler	input	is	defined	as:	

𝑜*	 Cooler	 Table	[9]	
0	 Off	
1	 On	

	

The	heater	input	is	defined	as:	

𝑜)	 Heater	 Table	[10]	
0	 Off	
1	 On	

	

The	humidity	warning	lights	are	defined	as	(note	that	they	are	active	low):	

𝑜'	 Low	humidity	warning	 	 𝑜(High	humidity	warning		 Table	[11]	
1	 Off	 	 1	 Off	
0	 On	 	 0	 On	

	

As	implied	by	letter	“Y”,	the	rest	of	the	bits	(𝑜+#	…	𝑜&)	are	don’t-touch.	These	must	not	be	changed,	as	
they	might	be	connected	to	other	devices	that	we	do	not	want	to	influence.	We	can	ignore	them.	

1.1.3 System	Operations	

Let	 us	 use	 a	 polling	 scheme	 to	 acquire	 input	 data.	 The	 main	 application	 runs	 in	 an	 infinite	 loop	
continuously	reading	the	input	register	“𝐼”	(see	section	2.1.1).	Based	on	these	inputs	and	laws	described	
in	this	section,	the	outputs	are	determined	and	continuously	updated	by	writing	into	output	register	“𝑂”	
(see	section	2.1.1).	Apart	from	“𝑂”	related	information	must	be	logged	into	a	file.	

If	the	door	is	locked	the	red	light	must	be	on.	If	the	door	is	unlocked	the	green	light	must	be	on.	

The	fan	speed	must	be	set	according	to	the	fan	switch.	For	example	 if	the	fan	switch	 indicates	the	off	
status	(𝑖+𝑖"𝑖# = 111),	the	fan	must	be	turned	off	by	writing	the	output	𝑜+𝑜" = 00.	Refer	to	tables	2	and	
8.	

The	cooler	can	be	turned	on	only	if	the	AC	is	turned	on	by	user.	If	AC	is	on,	the	condition	for	switching	the	
cooler	on	from	an	off	state	is	

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 > 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝐷𝑒𝑠𝑖𝑟𝑒𝑑 + 0.3℃	.		 	 (4)	

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 5	

The	heater	can	be	turned	on	only	if	the	AC	is	turned	on	by	user.	If	AC	is	on,	the	condition	for	switching	the	
heater	on	from	an	off	state	is	

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 < 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝐷𝑒𝑠𝑖𝑟𝑒𝑑 − 0.3℃	.		 	 (5)	

The	heater	continues	to	work	until	it	is	warmer	than	or	equal	to	the	specified	desired	temperature.	The	
cooler	continues	to	work	until	it	is	colder	than	or	equal	to	the	specified	desired	temperature.	If	the	AC	
switch	is	turned	off	by	the	user,	both	heater	and	cooler	must	be	turned	off.	

If	the	humidity	is	less	than	25%	low	humidity	warning	light	must	be	on.	If	the	humidity	is	more	than	60%	
then	the	high	humidity	warning	light	must	be	turned	on.	

1.1.4 Hazardous	System	Behavior	

Embedded	 systems	 are	 often	 used	 to	 govern	 a	 system	 consisting	 of	 a	 number	 of	 subsystems.	 These	
subsystems	must	work	in	coordination	in	order	to	assure	a	safe	and	trouble-free	operation.	Therefore,	it	
must	be	assured	that	some	hazardous	situations	will	never	happen.	Considering	the	room	controller,	what	
do	you	think	about	the	following?	

• Keeping	both	cooler	and	heater	on	at	the	same	time!	
• Keeping	both	red	and	green	light	on!	
• Keeping	both	red	and	green	light	off!	
• The	room	temperature	is	outside	the	sensor’s	operational	range!	
• Keeping	both	low	and	high	humidity	lights	on	at	the	same	time!	

1.1.5 Temperature	Control	Approach	

One	of	common	roles	of	embedded	systems	is	to	work	as	a	controller	in	a	“control	theory”	sense.	In	this	
chapter	we	used	a	closed-loop	approach	to	control	the	temperature.	The	feedback	is	provided	using	the	
temperature	 sensor.	 The	 controller	 scheme	 that	 we	 used	 is	 a	 Bang-bang	 controller,	 also	 known	 as	
hysteresis	controller.	A	Bang-bang	controller	is	particularly	useful	here	since	the	only	change	that	we	can	
make	is	to	switch	on	or	off	the	cooler	or	the	heater.	

An	open-loop	approach	would	be	to	switch	the	heater/cooler	on	and	off	regularly	without	reading	the	
actual	temperature.	The	period	and	the	duty	cycle	(borrowing	terminology	from	Pulse-Width	Modulation)	
must	be	calculated	and	fixed	beforehand	and	will	not	change	when	the	system	is	working.	For	example,	
for	 keeping	 the	 temperature	 at	24℃	 the	 heater	 is	 turned	 on	 for	 1	 second	 and	 then	 turned	 off	 for	 3	
seconds.	 This	 repeats	 over	 and	 over.	 This	 open-loop	 approach	 is	 useful	 if	 we	 assume	 that	 almost	
everything	is	fixed.	For	example,	the	following	must	not	change:	(1)	room’s	thermal	characteristics,	(2)	
the	outside	ambient	temperature,	and	(3)	heating/cooling	output	power	of	the	heater/cooler.	However,	
in	reality	these	will	change	and	therefore	an	open-loop	controller	will	not	be	able	to	keep	the	temperature	
at	 the	desired	 level.	Examples	 for	 factors	that	affect	room’s	thermal	characteristics	 include	number	of	
people	in	the	room	as	well	as	the	windows	being	open	or	closed.	

1.2 Work	Flow	

Copy	“room	controller”	from	“skeleton”	(/home/TDDI11/lab/skel)	directory	to	your	local	directory	(we	
assume:		userID/TDDI11/	room_controller)		

cp -r /home/TDDI11/lab/skel/room_controller /home/userID/TDDI11

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 6	

Please	note	that	userID	is	the	user	name	that	you	use	to	login	to	the	lab	computers.	Now	let	us	change	to	
the	new	directory	and	check	it:	

cd /home/userID/TDDI11/room_controller

ls

Check	to	see	if	“room_controller”	directory	contains	the	following:	

• main.c	
• inputData.txt	
• outputLog_Correct.txt	
• displayLog_Correct.txt	

The	source	code	is	in	“main.c”.	Some	inputs	for	simulation	are	provided	in	“inputData.txt”.	The	correct	
outputs	 for	 these	 inputs	 are	 logged	 in	 “outputLog_Correct.txt”.	 The	 corresponding	 display	 log	 is	 in	
“displayLog_Correct.txt”.	In	the	assignment,	you	will	use	“inputData.txt”	for	simulation	and	compare	your	
results	with	correct	results	that	are	provided	in	“outputLog_Correct.txt”	and	“displayLog_Correct.txt”.	

1.2.1 The	Source	Code	
Please	note	that	the	area	in	the	source	code	marked	with	“// Assignment”	are	not	correct.	These	are	
areas	left	to	be	completed	as	part	of	the	assignment.	

The	acquisition	of	 inputs	 is	simulated	by	a	function	called	“readInput”.	 In	an	embedded	system	such	a	
function	will	read	the	values	from	an	input	register.	In	this	lab,	we	read	from	a	file,	instead.	Each	line	in	
“inputData.txt”	contains	a	sample	which	is	a	simulated	readout	of	the	input	register.	Please	ignore	this	
function:		

unsigned int readInput(unsigned int sampleIndex)

The	enforcing	of	output	is	simulated	by	a	function	called	“writeOutput”.	In	an	embedded	system	such	a	
function	will	write	the	outputs	determined	by	the	program	to	the	output	register.	In	this	lab,	we	write	to	
a	 file,	 instead.	 Each	 line	 in	 “outputLog.txt”	 contains	 an	 output	 value	 that	 is	 determined	 based	 on	 a	
corresponding	input	value.	Please	ignore	this	function:		

int writeOutput(unsigned int outputCurrent, unsigned int sampleIndex)

The	main	part	of	the	code	is	in	an	infinite	loop.	This	loops	has	three	main	sections:	(1)	Read	inputs	and	
sensor	data;	then	convert	them	to	meaningful	information.	(2)	Decide	on	outputs.	(3)	Write	outputs.		

Extracting	Inputs	

For	extracting	and	isolating	the	related	bits	out	of	the	input	register,	we	use	shift	and	mask	operations.	
Masking	means	that	we	change	the	bits	that	we	do	not	need	to	zero	while	keeping	the	important	bits	
unchanged.		

For	example,	humidity	sensor	data	in	the	input	variable	can	be	visualized	as	“XXXX XXXX XIII IIXX
XXXX XXXX XXXX XXXX”	assuming	that	"I"	is	an	input	bit	from	the	humidity	sensor	and	"X"	is	a	don't-
care	bit.	To	extract	humidity	value,	we	use	a	mask	that	is	all	0	but	at	bits	18	to	22.	The	mask	is	“0000
0000 0111 1100 0000 0000 0000 0000”	in	binary.	The	hex	equivalent	is	0x007C0000.	We	

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 7	

use	bitwise	AND	operation	to	filter	out	all	 irrelevant	bits	 in	the	"inputRegister".	Bitwise	AND	operation	
with	0	(false)	results	in	0,	wiping	out	the	unrelated	bits.	For	example:	

inputRegister: “XXXX XXXX XIII IIXX XXXX XXXX XXXX XXXX” &
mask: “0000 0000 0111 1100 0000 0000 0000 0000”
Results in: “0000 0000 0III II00 0000 0000 0000 0000”

Bitwise	AND	operation	with	1	will	not	change	the	value	of	the	other	bit,	keeping	the	needed	data	intact.		

For	example:	

inputRegister: “XXXX XXXX X101 01XX XXXX XXXX XXXX XXXX” &
Mask: “0000 0000 0111 1100 0000 0000 0000 0000”
Results in: “0000 0000 0101 0100 0000 0000 0000 0000”

Then	we	shift	the	remaining	bits	to	end	up	with	sensor	data.	

humiditySensor = (inputRegister & 0x007C0000) >> 18

For example: “0000 0000 0101 0100 0000 0000 0000 0000” >> 18
Results in: “0000 0000 0000 0000 0000 0000 0001 0101”

The	isolated	bits	must	be	then	interpreted	using	tables	and	equations	given	in	section	2.1.		For	example	
“1 0101”	is	the	humidity	sensor	data	value	which	must	be	converted	to	humidity	percentage	using	table	
6	and	equation	3.	 	 	

Based	on	information	gained	in	section	(1)	of	the	code,	the	outputs	are	determined.	For	example	if	it	is	
colder	than	desired,	the	heater	must	be	turned	on,	if	it	is	too	dry,	the	warning	light	for	low	humidity	must	
be	lit,	and	so	on.	

Combining	Outputs	

Now	that	the	outputs	are	determined,	they	must	be	combined	into	a	single	variable.	Section	(3)	in	the	
code	 combines	 these	 to	 be	 written	 to	 the	 output	 register.	 To	 combine	 these,	 shift	 and	 bitwise	 OR	
operations	are	used.	For	example	low	humidity	warning	light	control	bit	(𝑜')	can	be	visualized	as:	

“YYYY YYYY YYYY YYYY YYYY YYYY OYYY YYYY”	,	assuming	that	"O"	is	the	output	bit	and	"Y"	
is	a	don't-touch	bit	that	its	value	must	not	change.	The	output	value	“O”	must	be	first	shifted:	

 “0000 0000 0000 0000 0000 0000 0000 000O” << 7
Results in: “0000 0000 0000 0000 0000 0000 O000 0000”

Bitwise	OR	operation	with	0	(false)	will	not	change	the	value	of	the	other	bit,	keeping	the	outputs	written	
by	other	parts	of	the	program	intact.	For	example:	

outputRegister:“1001 1001 1001 1001 1001 1001 O101 1001” |
Shifted bit: “0000 0000 0000 0000 0000 0000 O000 0000”
Result in: “1001 1001 1001 1001 1001 1001 O101 1001”

Since	before	writing	anything	else	 in	 the	output	 variable,	we	 clear	 it	 and	 since	 the	other	parts	of	 the	
program	do	not	change	bits	that	are	not	for	their	use,	the	bits	related	to	the	this	part	of	the	program	are	
0.	Therefore,	a	bitwise	OR	operation	with	the	determined	value	will	correctly	place	them	in	the	output	
variable.	

outputRegister:“YYYY YYYY YYYY YYYY YYYY YYYY 0YYY YYYY” |
Shifted bit: “0000 0000 0000 0000 0000 0000 O000 0000”
Result in: “YYYY YYYY YYYY YYYY YYYY YYYY OYYY YYYY”

Pay	attention	that	in	this	case,	as	define	in	table	11,	writing	1	actually	turns	off	the	light.		

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 8	

Another	aspect	of	bit	operations	is	implementing	simple	multiplications	with	shift	and	summations.	On	
some	platforms,	this	approach	might	be	faster	or	consumes	less	power.	We	utilize	the	fact	that	a	single	
shift	 left	 is	multiplication	 by	 2.	 For	 examples:	 	 (𝑎	×	2) 	= 	 (𝑎	 << 	1);	 (𝑎	×	3) 	= 	 ((𝑎	 << 	1) 	+ 	𝑎);	
(𝑎	×4) 	= 	 (𝑎	 << 	2);	and	so	on.	 	

Compile	and	Run	

Compile	and	run	the	code	with:	

gcc main.c -std=c99

./a.out > displayLog.txt

For	debugging	purposes,	we	have	the	possibility	to	stop	the	loop	by	“getchar()”	and	see	the	output	on	the	
terminal.	Alternatively	we	can	redirect	the	display	output	to	“displayLog.txt”	by	“./a.out	>	displayLog.txt”.	
To	be	rigorous	you	can	use	“Wall”,	“Wextra”,	and	“pedantic”	while	compiling.	

Please	note	that	the	c	code	can	be	understood	only	by	referring	to	tables	and	equations	given	in	section	
2.1.		

In	each	of	the	loop,	a	new	sample	from	the	input	file	is	read	and	processed.	When	we	reach	to	the	end	of	
file,	the	program	ceases	execution.	In	reality,	it	will	run	as	long	as	the	system	is	powered	and	“on”.	There	
will	be	no	end	of	file	in	real	life.	

1.2.2 Outputs	
The	input	and	output	register	value	are	not	human	readable.	We	can	compare	the	output	values	with	the	
correct	ones	 in	“outputLog_Correct.txt”.	The	terminal	 log,	“displayLog_Correct.txt”,	 is	however	human	
readable.	The	following	is	displayed	for	a	single	input	

inputCurrent=246192	

inputs:	Lock=0,	Fan=0,	AC=1,	Desired=21.000000,	Measured=30.000000,	Humidity=0	

outputs:	Green=1,	Red=0,	Fan=3,	Cooler=1,	Heater=0,	Humidity2H_n=1,	Humidity2L_n=0	

first	line,	“inputCurrent”,	shows	the	input	sample	as	a	decimal	value.	The	interpreted	inputs	are	displayed	
in	the	next	line.	The	open	locks	means	green	signal	as	shown	in	the	outputs	printed	in	the	third	line.	It	is	
warmer	 than	 desired,	 therefore,	 the	 cooler	 is	 on.	 It	 is	 too	 dry,	 therefore,	 dryness	warning	 is	 on	 (pay	
attention	that	the	signal	is	active	low	and	“0”	means	“true”).	

1.3 Evaluation	

1.3.1 Assignments	

Compile	and	run	the	source	code	and	then	compare	the	results	(displayLog)	with	the	correct	one.	Read	
and	understand	the	source	code.	Pay	attention	that	the	area	marked	by	“// Assignments”	indicates	
missing	code	or	incorrect	code	that	you	need	to	update,	change,	or	add	new	lines	to	it,	in	order	to	correct	
the	program.	It	is	needed	to	go	back	and	forth	between	the	lab	manual	section	2.1,	the	source	code,	its	
output,	and	the	correct	output.	

Identify	the	correct	behavior	and	correct	the	source	code	by	adding	missing	code	and	correcting	the	wrong	
existing	code.	The	corrected	code	must	generate	correct	outputs	similar	to	the	“_Correct”	files.	

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 9	

Discussions	

Please	briefly	discuss	the	answers	to	the	following	questions.	Write	just	a	few	sentences.		

1.	We	discussed	combining	outputs	with	shift	and	bitwise	OR	in	section	2.2.1.	Can	we	“add”	(+)	different	
outputs	instead	of	performing	bitwise	OR	operations	(section	3	of	code	inside	the	main	loop)?	Why?	

2.	(Optional):	Do	a	brief	research	(perhaps	on	the	web)	on	Bang-bang	(Hysteresis)	controllers	in	relation	
to	equations	4	and	5.	Answer	the	following	questions	in	a	few	words:	

3.	(Optional):	Which	part	of	equations	4	and	5	represents	“hysteresis”	in	our	system?	How	much	is	the	
value	of	“hysteresis”?	

4.	(Optional):	Why	do	we	need	hysteresis	in	our	system?	What	will	happen	if	its	value	is	zero?	

1.3.2 Demonstrations	

Run	 the	 program	 and	 show	 the	 code	 to	 the	 lab	 assistant.	 Briefly	 discuss	 the	 answers	 to	 the	 above	
questions.	

1.3.3 Deliverables	
• The	corrected	source	code	
• outputLog.txt	
• displayLog.txt	
• Answers	to	the	above	questions	
• Feedback	questionnaire	

Email	them	to	your	lab	assistant.	Write	in	the	subject:	TDDI11	Chapter	2.	Make	sure	that	you	have	used	
the	given	inputData.txt	and	compare	your	output	files	against	the	“_Correct”	files.	

	

	

	

